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Abstract

This paper describes a new approach for IC layout and compaction. The
compaction problem is translated into a mixed integer-linear programming problem
of a very special form. A graph based optimizatic.. algorithm is used (o solve the
resulting problem. An experimental program that uses the above techniques is
described. The program could be used either as an aid to hand layout or as the
bottom part of an automatic layout generation program. e

The preparation of this paper was supported in part by the Defense Advanced
Research Projects Agency Grant No. N00014-82-K-0193, in part by ONR Grant No.
N00014-80-C-0197, and in part by Defense Advanced Research Projects Agency
Grant No., N00014-78-C-0164.
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-r 1. Introduction
2 One of the most time consuming and error prone parts of custom integrated y
:-; circuit design is low level cell layout. The logic designer can design a topological ?
3 layout of a digital circuit in the form of a "stick diagram" [Mead & Conway 1979; 1
Williams 1977] quite rapidly. However, the translation of this design into an actual :
B layout is tedious and error prone. Moreover, the same stick diagram can be mapped

- ' to a mask level layout in many different ways. On different occasions it is desirable

> to layout the same functional block differently. For example, the aspect ratio of the

i block might need to be changed so it would fit other parts of the design, or transistor
o sizes might need to be changed depending on the "fanout" load they have to drive.

\ Having a library of cells in stick diagram form together with a set of procedures
::I to translate them into layout is much more flexible and therefore more useful than a
a standard cell library. The cells could be scaled automatically according to fan in and

’ fan out considerations. Their shapes could be altered automatically to fit other pars.

Moreover changes in design rules will not render the cells obsolete.

Several algorithms that translate stick diagrams into layout have appeared in the

literature [Williams 1978; Dunlop 1978; Hsueh 1979a). However, these algorithms

are heuristic and ad hoc. Our approach is to translate the layout compaction problem

into an optimization problem.

-. The compaction problem is stated as a minimization problem; that is,

. Jind the minimum of the area function subject to linear and nonlinear constraints.

Y

N The optimization problem resulting is a mixed integer linear programming

problem of a very special kind. The integer variables are {0,1} decision variables. I‘or

every fixed set of decision variables, one needs to solve two independent longest-path
::. problems, one for the horizontal direction and the other for the vertical one. The
2 interaction between the horizontal and vertical compaction is via the integer decision
variables. More details on the problem formulation are given in Seclion 2.

o The constraints come from geometrical design rules, from connectivity
information and possibly from user specified constraints.

v The ability to specify additional constraints 10 the problem is very useful. 1-or
example, when one designs a cell that is to be replicated many umes (most popular
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3 example is the shift register cell in Mead & Conway), it is important to be able to ;

% specify that the center of an input node would be at the same height as the center of ?
a given output node. Using our technique, it is easy to compact cells in one direction

X while keeping the other dimension fixed. This feature is useful when one makes cells ;

N fit one another. Moreover, by manipulating the objective function it is possible to

2 influence the final shape of the compacted cells, i

& h We would like to stress that our compaction scheme is truly a two-dimensional

,3 ) compaction. Previous methods mentioned in the literature [Williams 1978; Dunlop

‘v 1978; Hsueh 1979a] use two one-dimensional compaction schemes.

’ The circuit compaction problem is made of three parts:

5 1) Translation of stick diagrams into an optimization problem.

N .

2 2) The solution of the optimization problem

5 3) Making modifications to the stick diagrams and mathematical optimization to

:;; try and improve the layout. For example, inserting jog points or symbol rotations.

3

|

In Section 2, we discuss the problem formulation and the translation from stick
diagrams to the mathematical optimization problem. In Section 3, we describe the
branch and bound technique we use to solve the optimization problem. In Section 4,
we give examples and some data about the experimental program we have
developed.

s iR

3.

2. Problem Formulation and Constraint Generation

oLl

Stick diagrams are a well known symbolic form for describing integrated circuits

2y

» (see [Williams 1977; Mead & Conway 1979}). Stick diagrams provide a topological
- description of the circuit specifying transistor size and type, the connecting lines, the
3_2} layers they are made of and their connections to other lines or transistors. Loosely
} speaking, the layout is made of hard fixed-shape cells. Cells are pull-up and pull-

down tpansistors, pass transistors, capacitors, and contacts. Interconnecting these cells
are rubber-band like lines that could be stretched and contracted along the horizonlal
or vertical axis, but have a fixed width, The width of lines is either the defaull
minimal width or larger.

In our system, the input is a CIF file. Each transistor or contact is an instance of a

i predefined symbol from a library. Interconnecting these cells are line segments. Fach

) ;
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. line segment is terminated either by touching a symbol or another line segment or by i
?j touching the outside boundary of the global cell. By convention, lines that are drawn ,
: with width less than or equal to the minimal width are assumed to be of minimal '.
£ width and lines that are wider are assumed to be constrained to be the width that

they are drawn at. All line segments are either horizonltal or vertical. All vertical or

! horizontal line segments stay vertical or horizontal respectively, under the

N . compaction process. Symbol orientations stay the same, too. I‘igure 1 shows an

; example of the input to the system.

» . Informally, the circuit compaction problem is as follows: Assume that the lower

2. left corner of the main symbol is at the origin. Specify the centers of all cells. The

y horizontal coordinate of each vertical line segment, the vertical coordinate of the

5 center of each horizontal line segment, and the length of each line segment such that

K all geometrical design rules are satisfied and the connectivity of the original circuit is
:’ not altered.

Geometrical design rules come in three varieties, separation rules, line-width
rules, and overlap rules. Since all transistors and contacts are predesigned, overlap

Ry

> | ; : o o . :

b rules are automatically satisfied. Line-width rules are built-in; that is, the width of

each line is computed and is assumed to be fixed. Line-width enters into the

§ calculations as constants in the constraint generation part.

zY
‘,3 The compaction problem is translated into a mixed linear-integer programming
W problem with a nonlinear objective function, namely the area of the compacted cell.
; The linear constraints come from distance and conneclivity requirements between
1 the various components of the circuit. Although the problem could be solved as a
X general mixed integer programming problem, doing so would be very inefficient and
: expensive. The problem we actually solve is formulated as a graph problem. All
& linear coastraints are encoded as arcs on a graph. For example, the encoding of the
§ distance requirement between a poly-silicon line and a poly-solicon-metal contact cell
, is shown in Figure 2.
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Figure 2: A simple arc constraint
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'. Now both x) and x are nodes in the graph with an arc with weight 5 in between.
: We construct two graphs, an X-graph and a Y-graph. The nodes in the X graph are
3: the X coordinates of all the center points of the symbols and the centers of vertical
& lines. Similarly the nodes in the Y-graph are the Y coordinates of the symbols’
i centers and the horizontal lines.

The integer decision variables come from the interaction of corners. (See I‘igure

P
ArF Pd

3)
o (x1, y1) o
! di :
" ‘ r_ 11"' ¢ ——0 d2
-— di - T .
(x2, y2)
Horizontal Graph OR Vertical Graph
x2-x1>d1 yl-y2>d2

Figure 3: Dual-arc Constraints
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i'\ For each pair of constraints, there is a decision variable. Its value determines
’:’:1-.' whether the X arc or the Y arc will be active in the corresponding graph. The above
! pair of constraints is non-linear because of the OR function and the feasible region is
4"‘ non-convex. The constraints could have been made linear by a priori choosing one of
the constraints and dropping the other. This however will reduce the size of the
feasible region and will result in inferior compaction. [Figure 2 illustrates a case thal
N gives rise to a single arc constraint and Figure 3 illustrates a case thal produces pairs
o of constraints.

) A Another type of constraints come from connectivity requirements. In the course
2 of compaction, one has to maintain connections between the lines and the
. corresponding symbols. A connection point between a line and a symbol does not
have to be fixed. It can slide along the edge of the connecting layer, as long as it does
_«; not violate line-width or distance rules. The connectivity requirement is coded as a

S pair of inequalities. This time the pair is coded as two arcs between the same two x
nodes or y nodes. For an example, see Figure 4.

-2 m [x2-x1|<d
e | i.e. 'd 'd
3 | x1x2>-d Yy
o x2-x1>-d
o I<—|—J
1 dl d
Lot x1 x2 x1
; o4
1‘ Figure 4: Connectivity constraints
3 N o
X As we shall see later, the connectivity requirements complicate the longest path
' algorithm we use, since the graph is no longer acyclic.
%,
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Problem Formulation
Let us now introduce some notation and definitions:

There are two graphs Gy and Gy that encode the set of constraints, one for
horizontal constraints, Gy, and one for vertical constraints. Gy.

x = {X, Ey, W,} is a directed graph. X = {x;} is the set of nodes in the graph,
one for each symbol instance, one for each vertical line and two special nodes s, (the
source) and ty (the sink). sy corresponds to the left boundary of the cell and t,
corresponds to the right boundary of the cell. An arc is put between s, and all
symbols and vertical lines that are visible from the left side of the cell. Similarly arcs
are put between all symbols that are visible from the right and the sink node t,.

Ey = {<x;, xJ> | x;, Xj € X} is the set of arcs in the graph, one arc for e.mh
inequality. The set of inequalities E, is divided into three sets.

Exy = Ay URy U D,

Ay is the set of simple arcs. These arcs correspond to simple horizontal
constraints. Ry is the set of vertical intra-group arcs. The arcs in R are divided into
groups. Each vertical intra-group corresponds to a collection of symbol instances that
are connected by vertical lines. The arcs in these groups correspond (o conneclivily
constraints. They come in pairs (as was shown in Figure 4). I'igure S shows an
example of a vertical group and the corresponding graph.

Horizontal graph
‘0 o)
, )
i ¢y
4 C. )‘
)

:ﬂ-il <),

Figure 5: A Vertical Group
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Dy is the set of arcs that correspond to horizontal constraints that have a dual
vertical constraint. Such constraints are illustrated in Figure 3.

Wy is a set of weights.

2 Wy = {wh | < xp € Ey, whj € B).
3

. Each arc in the set E, has a weight attached to it, corresponding to the horizontal
A distance requirements, '
i N . The graph Gy and the sets Ay, Ry, Dy are defined in an analogous way lo G,,
R ' Ay, Ry, Dy respectively by interchanging horizontal and vertical axes and changing x
‘ o y.

In addition to the two graphs, there is a set of decision variables 1. Liach decision
variable dj, corresponds to a pair of arcs <e¥j, ¥, e¥j € Dy, ¢¥; € Dy. By
coastruction, Dy and Dy have the same number of arcs. Each arc in 1), corresponds
to one and only one arc in Dy. Each decision variable can take the values {0,1}.

The optimization problem:

For each node x; € Gy and y; € Gy, we assign values xj and y; respectively. (We

§ use the node name and its value interchangeably, hopefully without confusing the

1 reader). |

X :
1 The vector of values z = <x, y, d> is said to be feasible if the following conditions

are satisfied: :

&) )

2 For each arc ¢ € A; U Ry; e = «; xp

>

N~ 552w

§ Similarly,forencharceeAyURy;e=<yi,yj>

5 .

z Yi =y 2 W

. and for each d; € I
X —xp 2 whif g = 1

Vi -y 2 W ifdi=20 i
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where d; corresponds to the pair of dual arcs (e"ij, eyij).
let @ = {22 = <x, 5, & ; z is feasible}

be the set of feasible points. Our problem is

Problem 1:

[min f{x, y) ]
ZeQ

f(x, y) is the objective function. Ordinarily the objective function is the area occupied
by the cell. In that case f{x, y) = (t; — s5) (ty — sy).

It is possible, however, to manipulate the objective function in order to get
certain effects. For example if compacting in the horizontal direction is more
desirable than compacting in the vertical one, f = (ty, — s,) (ly - sy) + C(ty — sy)
with large C wlfld be used.

The compaction and layout generation has been formulated as a graph
minimization problem. The task at hand therefore is to translate the stick diagram
into the graph form, solve the minimization problem, and then translate the solution
into an actual layout. In this section we are going to give some details about the stick
diagram to graph problem translation. The algorithm used for solving the graph
minimization problem is given in Section 3. Once the minimization problem is
solved, the layout generation part is straightforward.

At first sight, the translation from the stick diagram to a graph problem looks
easy. Connectivity constraints can be generated by looking at the two ends of each
line. The difficulty arises in the distance constraint generation. First, pieces of circuits
that are on the same electrical node and are on the same layer do not have to be
constrained. This is solved by doing electrical network extraction as part of the
translation.

Second, in principle each piece of circuit can interact with any other piece of
circuit and therefore a constraint has to be put between the two. In reality, the
interaction between different pieces is very local. Although it would not be "wrong"
to put constaints between pieces of circuits that do not interact (the solution of the
resulting problem will still be correct), clearly it is undesirable to do so. Using tnore
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constraints than necessary requires more space and more time for the solution.
Finding the smallest number of constraints necessary for the compaction problem
seems to be very hard. Our approach is to try and limit the number of extraneous
constraints but not necessarily to find the minimal set of constraints. Afler staring a
while at some integrated circuits, one realizes that the main reason that pieces of
cirucuits do not interact is the fact that circuits tend to form small compartnents.
One can think of the pieces of circuits, transistors, lines, and so on as the walls of the
compartments and the space in between as the area that makes the compartiment.
Two pieces of circuit that do not share a compartment could not possibly interact
since compaction leaves the topology of the circuit invariant. Since there are no
distance restrictions between metal and the other layers (poly, diffusion implant), one
needs to construct two kinds of compartments, one for metal and one for the other
layers (See Figure 6). A scan-line based "ponds and islands™ algorithm is used to
identify the compartments and to group the pieces that make the comparunent walls.

3. Methods for Solving the Mathematical Problem

In the previous section a detailed description of the graph optimization problem
to be solved was given. A full description and analysis of the solution methods and
algorithms one could use for solving the above problem cannot be given here; it will
be reported elsewhere [Watanabe). We are, however, going to outline the major ideas
and algorithms that are used to solve the problem.

Problem 1 is made of two parts - an integer part and a graph part. et d be a
vector of decision variables d = <dj, ..., du') d; € {0,1}. Clearly d cun take plll
different values. For each fixed value of d, say d; one has two graphs

8x(dp) = {X, Ex(dp), W.} and g,(dg) = {Y, Ey(dg), Wy 1. gx(dp) is a subgraph of
Gy and gy(do) is a subgraph of Gy. The arcs in gy(dy) are all the arcs in Ay U R,
and the set of arcs in Dy that corresponds to the components of d; that are equal to
1. That is, '

Ex(dg = Ry U Ay U Dy (dy)
where Dy(dy) = {¢; | ¢ € Dy and d; = 1}

Similarly, Dy(dg) = {¢; | ¢ € Dy and & = 0}.

A few observations are in order:
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1) For each fixed value of d one has two separable graph problems, one for the x-
variables and one for the y-variables.

2) Since the objective function is monotone in x and y, each one of the graph
optimization problems is simply the longest path algorithm.

3) Although the graphs G, and Gy are not acyclic, they are "almost” acyclic.
Ounly a simple modification of the longest path algorithm is needed.

4) If ,! is different from d,2 only in one component, say d;! = 1 and ¢;2 =
then g,(d?) is different from g,(d?) only by one arc. Namely, g,(d?) is obtained from
gx(d1)? by removing the arc that corresponds to the decision variable di. Similacly
gy(dz) can be obtained from gy(dl) by adding the arc that corresponds o d.
Therefore, if one has solutions for the longest path problems for g,(d!) and g,(d").
finding the longest path solution for g,(d?) and g,(d?) could be done by updating the
longest path solution at hand with fewer steps than otherwise will be required.

The algorithm used to find the best decision variables combination is "branch
and bound" (see Garfinkel and Nemhauser [1972]). The "brauch and bound”
technique is basically an exhaustive search by enumeration. The set of all possible
values of the decision variables can be thought of as a complete binary decision lree.
The leaves of the decision tree correspond to a fixed set of values of the decision
variables. Branch and bound technique is a depth first search for the best answer. At
each stage of going down the decision tree, one more 0-1 variable is being fixed. The
main idea behind branch and bound is to compute at each stage a global upper
bound and a local lower bound for the subtree that is searched. Each upper bound is
a feasible solution. The lower bound is not. The moment a lower bound exceeds the
best upper bound that was found so far, the corresponding subtree can be ignored
since no feasible solution for that subtree will improve the global resull.

Each lower bound is computed by dropping the constraints that correspond to
decision variables that have not been fixed yet. An upper bound is computed by
picking a specific value for the decision variables that agrees with the set of decision
variables that have been fixed.

Branch and bound is a standard algorithm and will not be described here.
However, these observations are in order:

11
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s 1) The algorithm starts by computing an initial guess. The better the initial guess,
; the better branch and bound performs. We use a heuristic method for finding the h
’ initial guess. It has been observed that the initial guess yields a solution that is about ;
4 10% worse than the optimal one. /
? 2) At each step of the branch and bound, an arc from the critical path of g, and

" 8y is removed. Therefore, if some decision variable corresponds to arcs that do not

4 - become part of a critical path, that decision variable never becomes part of the

[+ branch and bound tree.

3) The choice of where to branch next is arbitrary. We use a heuristic to decide
J where to branch. In all cases tested so far, the optimal solution was found after few

3 branchings (less than 100). However, verifying that a solution is optimal took a long

& time. How exhaustive a search to make, however, could be set by the user.

T

¢

4) By modifying the pruning procedure of the branch and bound algorithm, it is

possible to speed up the search tremendously but at the expense of perhaps finding
only a suboptimal solution. In our experience, even the initial solution is a good
suboptimal solution,

P NN

4. Implementation, Examples, Conclusions

An exoerimental program to test our ideas was constructed. The program is
written in PASCAL. The input to the program is written in CIF and the output from
the program is a CIF file. The program compacts NMOS stick diagrams using Mead
& Conway design rules. A decision was made not to provide a fancy user interface.
However, using CIF as the input/output language allowed us lo use existing tools.
& Although the program works only with Mead & Conway design rules for NMOS, it
; can easily be adapted to other technologies and different design rules. Most of the
technology and process-dependent rules are in table form. Also, there are no
: restrictions on the predefined library of cells. That set can have any user defined
S cells.

P R ST PLE

Our initial experience with the program has been very encouraging. First, the

% method used for constructing an initial guess yields very good results. In all cases
2 tested, the initial guess was within 10% of the optimal solution. Second. the heuristics
c. used in the branch and bound search worked very well. Even though the number of
: decision variables can be large (100-1000 or more), the optimal solution is found

S
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-c quite fast, usually after less than 100 steps. Verifying that the solution is oplimal,
: however, can be very expensive. Thousands of branch and bound steps may be
‘ necessary. To date, a good stopping strategy, except limiting the number of branch
o and bound steps, has not been found. Automatic insertion of jog points has not been
g implemented as yet.
N To illustrate the quality of compaction achieved, two "before and after” examples
2 - are given. The first example is a T flipflop. The input is given in Figure 1. The result
_{.3 is given in Figure 7. The optimum was found after 8 steps and it was verified at the
;’ ) 10th step. The program, running on a VAX 11/780 under UNIX, took 11.8 seconds
, to produce the answer.
.:.:f The second example, Figures 8a - 8b, is a priority queue cell {[Kedein 1981]. The
N optimal answer was found after 48 steps. However, thousands of steps were required
X to verify that the solution was optimal. It might be of interest to note that the cell
was first laid out by hand. The result produced by the program was better than the
2 hand-crafted one. It took the program about 2 minutes, 11.4 seconds to find the final
E answer, 42.2 seconds for preprocessing, 50.9 for finding first guess. and 38.9 seconds
2! for branch and bound.
4;.
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